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ABSTRACT: 
The frequency behaviour of a thermoelectric generator becomes very important when a high frequency switching 
regulator is used.   The operating frequency of switching regulators has steadily increased over the past few years and 
>1MHz is now practical. A thermoelectric generator is constructed from a large number of series connected 
parallelepipeds of some thermoelectric crystalline material. The hot and/or cold reservoir is made of some electrically 
conductive metal, and the fluid is to some extent conductive to the ground.  This topology generates a number of small 
capacitors formed by each two parallelepiped crystal faces and the usually grounded thermal reservoir. We analyse the 
frequency behaviour of such a thermoelectric generator, which typically contains thousands of parallelepipeds, each 
generating few milliwatts. 
 

INTRODUCTION: 
Electronic network theory of linear circuit elements has a strong connection to the mathematics and the algebra of 
Polynomials in the Complex Domain.  This is due to the fact that a dynamical differential equation can be Laplace 
transformed from the time domain into the frequency domain, and in the process, is turned into a polynomial in the 
complex variable “s = β + iω”, where (ω) is the angular frequency “f = ω/2π” and (β) is the dissipative (or generative) 
time-constant.  A thermoelectric generator consisting of a large number of small crystals connected serially together can 
be considered as a naturally occurring network of lumped elements, and is ideally suited to network analyses in the 
frequency domain.  
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1. Thermoelectric parallelepipeds connected in series: 
Let a thermoelectric body be a rectangular parallelepiped with two opposite metal faces, each of area (A). The thermal 
and electrical paths are both along the length (l m) of the body, and it’s volume is “V m = A l m”.  Now consider a device 
consisting of a number of such rectangular parallelepipeds, all connected in series by a metallic conductor.  The 
thermoelectric solid body possess a dielectric constant (εm) between its two metallic faces. This results in a small 
capacitor of capacitance “C = ε m A / l m”.     A small resistor of resistance “R = l m / σ A”, where (σ) is the electrical 
conductivity of the thermoelectric material, is also present.  Further, due to the inertia of the charge carriers and 
magnetic fields, we also have an inductive behaviour as represented in the inductance “L = µ m l m” where (µm) is the 
permeability or specific inductance of the material in question.  To prevent excessive build-up of accumulated 
inductance of the complete device, with hundreds of series connected blocks, the blocks are arranged in a non-inductive 
arrangement such that no loops are formed.  The negative mutual inductance so formed, will speed up the transmission 
of electrical disturbances along the segmented path through all the thermoelectric blocks and metal joints.  
 
Now consider four series connected blocks of thermoelectric parallelepipeds as symbolized in the following figure. 
Observe new ground capacitor that is different from the body capacitor of the parallelepipeds above. Its area is larger, 
the dielectric length and the dielectric constant is different. We express this capacitor as ”C = εi Ai / li”, where the i-
subscript refers to the insulating topology, the length (li) also being the thermal length of the insulating layer from the 
metal face to the thermal reservoir: 
 

 
FIG 1, A GROUNDED LADDER GENERATOR 

 
With four parallelepipeds we can calculate the impedance, looking into the generator from the right, with the left side 
firmly grounded to both hot and cold reservoirs:  
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This continued fraction can be extended to any number of parallelepipeds or generating elements. At the highest 
frequency where “R + Ls >> 1/C s”, only one element is connected and gives “Z4 = R + Ls”, and at the lowest 
frequency, the impedance is “Z4 = 4 (R + Ls)”, displaying the number of parallelepipeds or thermoelectric elements.  
By expanding the continued fraction and using the complex variable “a = R C s + LCs2 ” as a shorthand, we get 
successively up to six generating elements: 
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By looking at the continued fraction we can deduce the recursive relation: “Zk = Z1 + Zk-1 / (1+CsZk-1)”, and with it, 
easily calculate for any number of generating elements.  For up to six elements we get accordingly: 
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2. Analytical evaluation for large number of generating elements: 
The coefficients of the numerator and denominator polynomials can be arranged in a Pascal’s-like triangle. This will aid 
in the seek for a simplified expression when using tens to hundreds of thermoelectric parallelepipeds: 
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Let D(n,m) and N(n,m) symbolize the denominator and numerator coefficients respectively, where (n) is the number of 
elements and the row counter, and (m) is the coefficient counter, also the column index. Starting with the denominator, 
which is simpler of the two, we see first that  “D(n,1)= D(n,n)=1”, and that the 2nd coefficient is just the sum of 
integers: (1), (1+2), (1+2+3), (1+2+3+4), etc.  This gives “D(n,2)=n(n-1)/2“.  Finally, the next to last coefficient is 
“D(n,n-1)=2n-3“ or the odd integers 1, 3, 5,  · · ·.  
Turning to the numerator, after a little thought, we see that the 2nd coefficient is the sum of partial sums as shown in the 
following sequences: (1), (1 + 1+2), (1 + 1+2 + 1+2+3), (1 + 1+2 + 1+2+3 + 1+2+3+4), etc.   After a little algebra, the 
2nd coefficient for the numerator is revealed as: “N(n,2)=n(n-1)(n+1)/6” displaying a third order growth (n3), while the 
denominators 2nd coefficient grew like the second power (n2).  Collecting all information, we have: “N(n,1)=n” and 
“N(n,n-1)=2(n-1)” and “N(n,n)=1” and the impedance of (n>1) elements  is formally express as: 
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To complete this work, we need to establish a relation between the numerator and denominator coefficients.  The first 
such observation is that the following is true for n>1: “N(n,2) = N(n-1,2) + D(n,2)”.  Let us try to get a similar 
expression for m=3. In fact when we try, the expression “N(n,m) = N(n-1,m) + D(n,m)” is also true!  If we can get a 
similar expression for the denominator, we are home.  Believe it or not, the result is “D(n,m) = N(n-1,m-1) + D(n-
1,m)”. The complete recursive relation for the numerator is therefore: “N(n,m) = N(n-1,m) +  N(n-1,m-1)  + D(n-1,m)”.  
The last relation enables us to obtain the general expression for the 3rd coefficient of the denominator polynomial as 
“D(n,3) = N(1,2) + N(2,2) + N(3,2) +  · · · +N(n-1,2)”.   In the same way we get “N(n,3) = D(1,3) + D(2,3) + D(3,3) +  
· · · +D(n,3)” and our task is almost done. We accumulate this information in the following expressions: 
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We almost have a closed form expression for both the numerator and denominator coefficients. For example, we see 
that “N/D = (n+m-1)/(m+2)” and after a little work, we arrive at the following two statements: 
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This pursuit has certainly paid off as we now have a closed form solution for both the numerator, and the denominator 
coefficients, up to any order in (n) or (m)! 
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3. Tabulation of values for the numerator and denominator coefficients: 
By inspection, both recursive and independent expressions, for either D(n,m) or N(n,m) can be obtained. We have thus 
in fact, solved all the difference equations encountered so far. The following relations are also memory efficient, 
needing only one stored variable besides the indexes, (n) and (m): 
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Constructing a recursive spreadsheet is now easy, using rows and columns to represent the index variables (n) and (m):  
 

D(n,1) D(n,2) D(n,3) D(n,4) D(n,5) D(n,6) D(n,7) D(n,8) D(n,9) D(n,10)
1         
1 1         
1 3 1       
1 6 5 1      
1 10 15 7 1     
1 15 35 28 9 1    
1 21 70 84 45 11 1   
1 28 126 210 165 66 13 1   
1 36 210 462 495 286 91 15 1 
1 45 330 924 1287 1001 455 120 17 1

 
 

N(n,1) N(n,2) N(n,3) N(n,4) N(n,5) N(n,6) N(n,7) N(n,8) N(n,9) N(n,10)
1         
2 1         
3 4 1       
4 10 6 1      
5 20 21 8 1     
6 35 56 36 10 1    
7 56 126 120 55 12 1   
8 84 252 330 220 78 14 1   
9 120 462 792 715 364 105 16 1 

10 165 792 1716 2002 1365 560 136 18 1
 
We are now in a position to write a simple computer programs to simulate any number of thermoelectric parallelepipeds 
connected in series. 
 

4. Convergence of the ladder polynomials for low frequencies: 
To investigate the speed of convergence when using a large number of elements at a low frequency in relation to the 
single crystal frequency “f0 = 1/2π(LC)1/2“, let us write the ladder polynomials as a power series in (a) using (m) as a 
term index: 
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By comparing terms it is apparent that if “|a| < 1/ n2”, convergence is guarantied and only few terms in (m) are needed 
in cases where (n) is large.  If we now transform from (a) back to the frequency (f), convergence is secured if “f < f0/n”.  
By performing the ratio-test on the numerator series, a larger interval of convergence is obtained as “|a| < 4m2/n2” and 
corresponding “f < 2f0m/n”.  This allows us to determine how many terms (m) are needed when (n) is fixed. 
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5. Zeros and factors of the numerator polynomials: 
It is now stated without proof that the zeros of the numerator polynomials which we label “Pn(a)” lie on the negative “a” 
axis where “a = RCs + LCs2”.  The reader is reminded of the fact that “Pn(0)=n”.  With elementary algebra we can 
factor the first few numerator polynomials as: 
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Observe that the zeros are centred about “a=-2” which is also a zero for all the even order polynomials.  Also note a 
new numerical sequence 0, 1, 21/2, φ, 31/2, … where (φ) is the golden section.  The limit of this sequence can only be 2 if 
our initial statement is proved:  The negative definiteness of the roots of the numerator polynomials Pn(a).  
Below is a graph of P3(a), P4(a) and P5(a) that display the confinement of the roots to the interval (-4 < a < 0) . 
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An important frequency of concern is the smallest frequency where P(a) =0.  If (ω) is the angular frequency in [rad/sec], 
we can write “a = RCs + LCs2 = -ω2 LC + i ωRC = -ω2 LC (1 - i R/ωL) = -(f/f0)2 (1 - i /Qf)”,  where “f0 = 1/2π(LC)1/2“  
is the free resonance frequency in [Hz] for a single crystal and “Qf = 2πf L/R” is the frequency dependant inductive 
quality-factor.  At very low frequencies, (a) is almost a pure imaginary number, whereas at the critical frequency (a) is 
equally real and imaginary and finally, at a very high frequency, (a) is almost a pure negative real number! 
 
We now present a formula to calculate the smallest root when we go from the origin to the left. This formula is based on 
empirical experimental mathematics and will be shown to be exact!  We label this first zero “aZ1“ where the Z1-
subscript refers to the numerator 1st zero.  
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For large (n), an asymptotic formula is easily derived by expanding the sinus function around zero: 
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6. Zeros and factors of the denominator polynomials: 
To factor the denominator polynomials, we apply the same algebraic methods as we did with the numerator 
polynomials.  Label the denominator polynomial for n elements Qn(a) in the hope of not to confuse the reader with the 
frequent discussion of the “Quality factor” also labelled Q. Starting with the first few, we immediately see generally 
more irrational roots and almost no integer roots, a different situation from the numerator polynomials.  To our pleasure, 
the distribution of the roots turn out to be very similar with a centre at “a = -2” and confinement, just as in the 
numerator case.   
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To prepare the reader with the general expression up to any n, we have written Q3(a) using cos(0) and cos(π) as a fancy 
way to express 1 and –1. Also notice that the 1st factor of Q5(a) is in fact Q2(a) in a trigonometric disguise! This is to 
display the similarity and common attributes among the denominator polynomials. Below is a graph of Q3(a), Q4(a) and 
Q5(a) that displays the confinement of the roots to the negative interval (-4 < a < 0) . 
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We now present a formula to calculate the smallest root when we go from the origin to the left. This will be the first 
pole of the total impedance. This formula is based on empirical experimental mathematics but will be shown to be 
exact!  We label this first pole “aP1“ where the P1-subscript refers to the numerator 1st root.  
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For large (n), an asymptotic formula is easily derived by expanding the sinus function around zero: 
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It is by now noticed, that the 1st zero and the 1st pole are related by a surprisingly simple relation:  
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7. The Zeta function, Riemann Hypothesis and the Ladder Polynomials: 
All recursive relations of both numerator and denominator coefficients have been derived without a single proof.  We 
will now present an equivalent set of equations easier to prove.  By inspection and simple algebraic operations, the 
following can be derived by some work. Notice a complete factorisation formula for both ladder polynomials! 
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To prepare for the proof of our so-far unproven statements, the following is a consequence of the factored polynomials 
and is deduced from the fact, that “Pn(0) = n” and “Qn(0) = 1”. 
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I t is the belief of this author, that proving these statements will be sufficient in proving most of the statements put forth 
so-far.  We herby name the problem: The Ladder Hypothesis.  To get more acquainted with the roots or zeros of the 
ladder polynomials, it is educational to connect each zero to its angle in the sinus argument.   We further choose to use 
the degree unit instead of the more mathematical radian, to stress the fact, that we have extended the so-called “regular 
angles” to an infinite set which contain familiar historic angles like: 10°, 15°, 18°, 22½°, 30°, 45°. 
 

7
1

7
2

7
3

7
4

7
5

7
6

2
1

2
1

13
2

13
4

13
6

13
8

13
10

13
12

11
7

11
3

11
10

11
6

11
2

7
2

7
4

7
6

776451382512
7560453015

72543618
674522

6030
45

76624834206
735740248

70503010
643812

5418
30

:rotaremuN:rotanimoneD

 

 
 
It is apparent that we need only one table of roots, the Numerator roots which also have a perfect central symmetry 
about the 45° centre column.  The Denominator roots are left biased starting at 30°, but will tend to 45° in the limit, 
when n grows large.  
 
 

8. The Ladder Polynomials and the Finite Products of Sinuses: 
In the next sections we will explore ways to obtain the simplest proof. 
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9. Finite products of the Sinus function: 
By inserting “a=0” into the factored polynomials Qn and Pn, two statements are derivable from “Qn(0) = 1” and “Pn(0) = 
n”: 
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A simpler version is known in the literature*, the Fundamental Sinus Product. It has recently gained some attention*: 
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Even integers “n = 2n” and the 90° symmetry of sinus will transform this into the half angle sinus product squared:  
 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) n
n
k n

n

k
nn

n
n

n
n

n
nnn ⋅=














 ⋅

=⋅⋅⋅⋅⋅ −
−

=

−⋅−⋅−⋅ ∏ 1
21

1
22

2
2

1
2

1
2
3

2
2

2 4
2

sinsinsinsin1sinsinsinsin ππππππππ LL

 
By the same method, we can generate a relation for the odd integers (2n-1) as seen in the next section (3).  

10. The finite sums of Logarithms of Sinus functions: 
Now let n>1 and take the natural logarithm of all four products of sinus to get four equally interesting statements: 
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We acknowledge the fact, that the last statement has not been proved yet. 

11. Positive integers expressed as products of “zeros”: n=(1-1-1/n)(1-1-2/n)… 
Some peculiar products involving only the number “1” and powers of it, can generate the integers, the square root of 
integers and much more. The Finite Products of sin simplifies by the exponential substitution “sin x = (2i) -1 (eix – e-ix)”, 
also known as the hyperbolic sinus of an imaginary argument. As the arguments are harmonic in our case, we can easily 
derive: 
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On the left we have a minimally expressed statement, on the right we have the essence of it’s proof. 
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12. The finite product of Cosinus functions: 
We would now like to make contact with the finite product of the Cosinus Function. This can be accomplished by using 
the identity sin 2x = 2 sinx cosx.  
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This rather surprising result can also be deduced from the identity sin (x) = cos (π/2 – x) and the Π sin(πk/2n) product: 
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We can now add both cos(x) and tan(x) to our arsenal of products of trigonometric functions: 
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From properties of the cos(x) function, we find that  Π cos(πk/n) = {-1, 0, +1} depending on evenness and oddity of n. 
The zero comes from even n = 2,4,6,… the minus one from n = 3,7,11,… and plus one from n = 5,9,13,… 
 

13. The Cotangent function and an infinite product expansion for Sinus: 
The cot(x) function is rather special being the derivative of lnsin(x). The Riemann Zeta function ζ(s) appears here: 
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We have used the infinite sum definition for the Riemann Zeta function to arrive at the final infinite double-sum. This 
result can also be obtained directly from the infinite product formula for the sinus function: 
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Notice the odd x in the sin function, which shows sin(x)/x as a simpler object than sin(x). Now take the natural 
logarithm of the infinite product for the sin function and get:  
 

∑∑
∞

=

∞

=








⋅
⋅−=


















⋅
−+=

1,

2

1

2 1ln1lnlnsinln
k

kx
k

xxxx
ll ll ππ

 

 
The interval of convergence is unconditional, at least on the interval [-π < x < π], which is in fact the largest interval to 
occur. For clarity let us now summarise this result in a formal way: 
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 The last equality support the recent attempts** to redefine the Bernoulli numbers to be even indexed, as we have 
related them to very fundamental functions, the natural logarithm and the sinus. The first seven (old) Bernoulli numbers 
are: 
 

6/7,2730/691,66/5,30/1,42/1,30/1,6/1 7654321 ======= BBBBBBB  
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14. Some power series with Riemann Zeta coefficients: 
To get a broader view on power series with Bernoulli numbers and/or the Riemann Zeta functions, let us reproduce 
some known results from the power series for tan(x) and cot(x): 
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At this moment, let us pause to express the first few even Riemann Zeta values and the alternating sign series also: 
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Although ζ(1) diverges to positive and negative infinity, ζ(0) is well behaved and is known to be ζ(0) = -1/2 and the 
corresponding Bernoulli number is B0 = -1. We can now define a rational function “κ2k = 2 ζ(2k) / π2k” with “κ0 = -1” 
which will simplify our series as: 
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The reader can verify that we can differentiate the last equation to obtain the cot(x) equation. A closer look at the tan(x) 
power series reveals the identity “tan(x) = cot(x) – 2 cot(2x)” a rather impressive fact! We further conclude, that the 
cot(x) power series converges much faster than the tax(x) power series and is simpler in expression. By integrating the 
tan(x) function we can obtain the ln cos(x) function as a power series: 
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The expression “a2k x2k” inside the sum can be defined for k=0 rendering the value “a0 = -ln 2”. The final result is: 
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15. Sinus and Gamma functions from series with Riemann Zeta coefficients: 
We will now discover a relation linking the Gamma Function and the Sinus Function. In section 6 we explored the 
lnsin(x)  power series with Riemann Zeta connection. By a change of variable “x = π z” and dividing by 2 it becomes:  
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This infinite series is of even order with index 2k=2,4,6,… and can be considered as the even part of a more general 
series with index values k=2,3,4,5,…  The odd series will accordingly have index 2k+1=3,5,7,… and it is: 
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An interchange of summation order in the double sum revealed the Taylor series for tanh-1(x).  Now subtract the odd 
series from the even series to get a series alternating in sign: 
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To complete this, we use Euler’s Constant: [ ]mmm
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We have thus completed the task of evaluating both the even, and the odd power series we started with, and the result 
is:  
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The reflective property of the Gamma Function “Γ(z) Γ(1-z) = π / sin zπ” appears here, and the odd case generates an 
infinite product formula to complement the even case. 

16. The Factorial Operator and the Gamma Function: 
Now we will give a rather strange expressions concerning two integers (m,n) with m>>n where (n) is fixed, but (m) will 
be increasing and tending towards infinity. 
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The relation “(m+n)! ≥ mn m!” is an equality when n=1. To make precise the largeness of m, we do a calculus analyses 
and get the formula “m > n2/2ε”, where ε is the relative error. For example, if we want <1% for n=5, we need m>1250, 
a rather slow convergence!  The product occurring “m” times can be used to define the general factorial function of a 
real or complex variable z. The result is the following definition for the Gamma Function used in section 15:  
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17. The finite Product of sin(πk/n) and Γ(k/n): 
We will now use two relationships among the Gamma Function Γ(1+z) to prove the Finite Product of Sinus for the 
fundamental argument (πk/n). The reflective property of the Gamma Function in section 8, will allow us to express the 
Sinus Function in terms of Gamma Functions.  This allows the use of a known formula for Finite Products of the 
Gamma Function, which can be found in most standard mathematical handbooks: 
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Now set “x=1” and use the recursive property of the Gamma Function “Γ(1+n) = n Γ(n)” and remember that “Γ(1)=1” 
to obtain: 
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Armed with the Finite Product of Squared Gamma Functions of the argument (k/n), we can now turn to the final proof: 
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This was not so hard! The key to this result is recognising that “Π f(k)f(n-k) = Π f2(k)” when “k=1,2…(n-1)”.  For 
example, if n=5 we get 1·4·2·3·3·2·1·4=1·1·2·2·3·3·4·4=12·22·32·42 which should convince the most sceptics! 
 
 

18. Stirling’s formula and lnsin(πk/n) sums: 
By solving together the infinite product expansion of the sinus function and our newly obtained finite sums for lnsin(x), 
we can generate some powerful statements about infinite sums. Starting with the prototype argument (πk/n) we can get: 
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Here we have used the Stirling’s formula for n! = Γ(n+1) to eliminate “n!/nn”!  We have further taken the liberty to 
define a function “σ(n) = ln(1+1/12n+1/288n2-…)” which obviously tends fast  to zero, as n grows larger. 
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19. The Factorial Triangle & Newton’s Polynomials: 
The core of the Gamma Function is the factor (z+k) with k=1,2,3,…n and (z) can be integer, real or complex. By 
performing the multiplication, a polynomial in (z) is formed. The coefficients of this polynomial can be arranged in a 
Pascal’s-like triangle: 
 

5040130681313267691960322281
72017641624735175211

12027422585151
245035101

61161
231

11
1

 

 
 
 
 

…A WORK STILL IN PROGRESS… 
 

27. August, 2002 
 

Guðlaugur Kristinn Óttarsson 
 

CREDITS 
This work is partially supported by the Icelandic Science Research Fund (RANNIS), the Icelandic Industrial and 
Technological Foundation (ITI), the Icelandic Ministry of Industry and the Agricultural Productivity Fund of Iceland. 
Pro%Nil Systems(1) and Genergy Varmaraf(2) have provided additional funding and support.  Warm thanks to Reykjavik 
Energy for providing research facilities and hot and cold water.  Cool thanks to Mr. Guðbrandur Guðmundsson2 and 
Mr. Sigurður Gunnarsson1 for proofreading the initial manuscript.   
 

 

A LADDER THERMOELECTRIC PARALLEPIPED GENERATOR,  page 13 of 13,  Guðlaugur Kristinn Óttarsson, (c) 2002. 


	A LADDER THERMOELECTRIC PARALLELEPIPED GENERATOR
	
	
	Guðlaugur Kristinn Óttarsson


	ABSTRACT:
	INTRODUCTION:
	CONTENTS:
	1. Thermoelectric parallelepipeds connected in series:
	2. Analytical evaluation for large number of generating elements:
	3. Tabulation of values for the numerator and denominator coefficients:
	4. Convergence of the ladder polynomials for low frequencies:
	5. Zeros and factors of the numerator polynomials:
	6. Zeros and factors of the denominator polynomials:
	7. The Zeta function, Riemann Hypothesis and the Ladder Polynomials:
	8. The Ladder Polynomials and the Finite Products of Sinuses:
	9. Finite products of the Sinus function:
	10. The finite sums of Logarithms of Sinus functions:
	11. Positive integers expressed as products of “z
	12. The finite product of Cosinus functions:
	13. The Cotangent function and an infinite product expansion for Sinus:
	14. Some power series with Riemann Zeta coefficients:
	15. Sinus and Gamma functions from series with Riemann Zeta coefficients:
	16. The Factorial Operator and the Gamma Function:
	17. The finite Product of sin(?k/n) and ?(k/n):
	18. Stirling’s formula and lnsin\(?k/n\) sums:
	19. The Factorial Triangle & Newton’s Polynomials

	CREDITS


