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ABSTRACT:

The frequency behaviour of a thermoelectric generator becomes very important when a high frequency switching
regulator is used. The operating frequency of switching regulators has steadily increased over the past few years and
>1MHz is now practical. A thermoelectric generator is constructed from a large number of series connected
parallelepipeds of some thermoelectric crystalline material. The hot and/or cold reservoir is made of some electrically
conductive metal, and the fluid is to some extent conductive to the ground. This topology generates a number of small
capacitors formed by each two parallelepiped crystal faces and the usually grounded thermal reservoir. We analyse the
frequency behaviour of such a thermoelectric generator, which typically contains thousands of parallelepipeds, each
generating few milliwatts.

INTRODUCTION:

Electronic network theory of linear circuit elements has a strong connection to the mathematics and the algebra of
Polynomials in the Complex Domain. This is due to the fact that a dynamical differential equation can be Laplace
transformed from the time domain into the frequency domain, and in the process, is turned into a polynomial in the
complex variable “s = 3 + i®”, where (®) is the angular frequency “f = ©/2x1” and () is the dissipative (or generative)
time-constant. A thermoelectric generator consisting of a large number of small crystals connected serially together can
be considered as a naturally occurring network of lumped elements, and is ideally suited to network analyses in the
frequency domain.
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1. Thermoelectric parallelepipeds connected in series:

Let a thermoelectric body be a rectangular parallelepiped with two opposite metal faces, each of area (4). The thermal
and electrical paths are both along the length (/,,) of the body, and it’s volume is “V,, =4 /,,”. Now consider a device
consisting of a number of such rectangular parallelepipeds, all connected in series by a metallic conductor. The
thermoelectric solid body possess a dielectric constant (g,) between its two metallic faces. This results in a small
capacitor of capacitance “C = ¢,,4/1,,”. A small resistor of resistance “R =1,,/ o A", where (o) is the electrical
conductivity of the thermoelectric material, is also present. Further, due to the inertia of the charge carriers and
magnetic fields, we also have an inductive behaviour as represented in the inductance “L = u,, [,,” where (u,) is the
permeability or specific inductance of the material in question. To prevent excessive build-up of accumulated
inductance of the complete device, with hundreds of series connected blocks, the blocks are arranged in a non-inductive
arrangement such that no loops are formed. The negative mutual inductance so formed, will speed up the transmission
of electrical disturbances along the segmented path through all the thermoelectric blocks and metal joints.

Now consider four series connected blocks of thermoelectric parallelepipeds as symbolized in the following figure.
Observe new ground capacitor that is different from the body capacitor of the parallelepipeds above. Its area is larger,
the dielectric length and the dielectric constant is different. We express this capacitor as "C = & 4; / ;”, where the i-
subscript refers to the insulating topology, the length (1;) also being the thermal length of the insulating layer from the
metal face to the thermal reservoir:

T L = b T L R
R ot T L R T L
G — [ — ==

FIG 1, A GROUNDED LADDER GENERATOR

With four parallelepipeds we can calculate the impedance, looking into the generator from the right, with the left side
firmly grounded to both hot and cold reservoirs:

Z,=R+L-s+

C-s+

R+L-s+

C-s+ I
R+L-s+

C-s !

+7
R+L-s

This continued fraction can be extended to any number of parallelepipeds or generating elements. At the highest
frequency where “R + Ls >> [1/C s”, only one element is connected and gives “Z, = R + Ls”, and at the lowest
frequency, the impedance is “Z, = 4 (R + Ls)”, displaying the number of parallelepipeds or thermoelectric elements.
By expanding the continued fraction and using the complex variable “a = R C s + LCs’ ” as a shorthand, we get
successively up to six generating elements:

2 2 3
Z-Rils. Z,-7. 2+a’ 23221.3+4—a+az’ 24221_4+10a+6az+c§
1+a 1+3-a+a 1+6-a+5-a” +a

By looking at the continued fraction we can deduce the recursive relation: “Zy = Z; + Zy; / (1+CsZy.;)”, and with it,
easily calculate for any number of generating elements. For up to six elements we get accordingly:

5420-a+21-a*+8-a° +a* 6+35-a+56-a*+36-a° +10-a* +a’
Zs=2," 2 3 FRlE Ze=2,- 2 3 4 5
1+10-a+15-a“+7-a” +a 1+15-a+35-a”“+28-a” +9-a" +a
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2. Analytical evaluation for large number of generating elements:

The coefficients of the numerator and denominator polynomials can be arranged in a Pascal’s-like triangle. This will aid
in the seek for a simplified expression when using tens to hundreds of thermoelectric parallelepipeds:

Denominator : Numerator :
1 1
1 1 2 1
1 3 1 3 4 1
1 6 5 1 4 10 6 1
1 10 15 7 1 5 20 21 8 1
1 15 35 28 9 1 6 35 56 36 10 1

Let D(n,m) and N(n,m) symbolize the denominator and numerator coefficients respectively, where (n) is the number of
elements and the row counter, and (m) is the coefficient counter, also the column index. Starting with the denominator,
which is simpler of the two, we see first that “D(n,1)= D(n,n)=1", and that the 2" coefficient is just the sum of
integers: (1), (1+2), (1+2+3), (1+2+3+4), etc. This gives “D(n,2)=n(n-1)/2*. Finally, the next to last coefficient is
“D(n,n-1)=2n-3 or the odd integers 1, 3, 5, - - -

Turning to the numerator, after a little thought, we see that the 2™ coefficient is the sum of partial sums as shown in the
following sequences: (1), (1 + 1+2), (1 + 1+2 + 14+2+3), (1 + 142 + 14243 + 1+2+3+4), etc. After a little algebra, the
2™ coefficient for the numerator is revealed as: “N(n,2)=n(n-1)(n+1)/6” displaying a third order growth (n*), while the
denominators 2™ coefficient grew like the second power (n?). Collecting all information, we have: “N(n,1)=n" and
“N(n,n-1)=2(n-1)" and “N(n,n)=1" and the impedance of (n>1) elements is formally express as:

B e I ee 1 L2 n-1
ZW:ZI-(IH_G”(” 1)a+ +(2n 2)a +a ]

1+§-n-(n—l)-a+ +(2-n—3)-a”‘2+a”_1

To complete this work, we need to establish a relation between the numerator and denominator coefficients. The first
such observation is that the following is true for n>1: “N(n,2) = N(n-1,2) + D(n,2)”. Let us try to get a similar
expression for m=3. In fact when we try, the expression “N(n,m) = N(n-1,m) + D(n,m)” is also true! If we can get a
similar expression for the denominator, we are home. Believe it or not, the result is “D(n,m) = N(n-1,m-1) + D(n-
1,m)”. The complete recursive relation for the numerator is therefore: “N(n,m) = N(n-1,m) + N(n-1,m-1) + D(n-1,m)”.

The last relation enables us to obtain the general expression for the 3™ coefficient of the denominator polynomial as
“D(m,3) = N(1,2) + N(2,2) + N(3,2) + - - - +N(n-1,2)”. In the same way we get “N(n,3) = D(1,3) + D(2,3) + D(3,3) +

- +D(n,3)” and our task is almost done. We accumulate this information in the following expressions:

D(n,)=1 N(nl)=n

D(n2)=1n-(n-1) Nm2)=1-n-(n>-1)
D(n3)=%4-n-(n* =1)-(n-2) Nn3)=-n-(n* =1)-(n* =2°)
D(n,m) = ”ZN(km 1) N(n,m):ZD(k,m)
D(n,n—-1)=2-n-3 N(n,n—l);2-n—2
D(n,n)=1 N(n,n)=1

We almost have a closed form expression for both the numerator and denominator coefficients. For example, we see
that “N/D = (n+m-1)/(m+2)” and after a little work, we arrive at the following two statements:

_nelntlom) fg0s ey ntlom g
D(n,m) = (2~m—2)! k=1 (n ¢ ) 2 m- 2)’ 1_!( )
n (. 2_; 1 Pk’
N(n’m):m.kzl (n -k )_n-(2'm_1)! ko(n ¢ )

This pursuit has certainly paid off as we now have a closed form solution for both the numerator, and the denominator
coefficients, up to any order in (n) or (m)!
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3. Tabulation of values for the numerator and denominator coefficients:

By inspection, both recursive and independent expressions, for either D(n,m) or N(n,m) can be obtained. We have thus
in fact, solved all the difference equations encountered so far. The following relations are also memory efficient,
needing only one stored variable besides the indexes, (n) and (m):

2 2
D(n1) =1, Dnym+1) =" " D m)
bon-ln-1)
n’>—m’
N(nl)=n, Nn,m+1)=——-N(n,m)
4-m-(m+1)

Constructing a recursive spreadsheet is now easy, using rows and columns to represent the index variables (n) and (m):

D(n,1) D(,2) D(n3) D4 Dn5 D@n6) D{m7) D@8 D(n9) D(n10)

1
1 1

1 3 1

1 6 5 1

1 10 15 7 1

1 15 35 28 9 1

1 21 70 84 45 11 1

1 28 126 210 165 66 13 1

1 36 210 462 495 286 91 15 1

1 45 330 924 1287 1001 455 120 17 1

N(n,1) N(n,2) N(n,3) N(n,4) N(n,5) N(n,6) N(n,7) N(n,8) N(n,9) N(n,10)

1
2 1
3 4 1
4 10 6 1
5 20 21 8 1
6 35 56 36 10 1
7 56 126 120 55 12 1
8 84 252 330 220 78 14 1
9 120 462 792 715 364 105 16 1
10 165 792 1716 2002 1365 560 136 18 1

We are now in a position to write a simple computer programs to simulate any number of thermoelectric parallelepipeds
connected in series.

4. Convergence of the ladder polynomials for low frequencies:

To investigate the speed of convergence when using a large number of elements at a low frequency in relation to the

single crystal frequency “f, = 1/21(LC)"*, let us write the ladder polynomials as a power series in (a) using (m) as a
term index:

I'Dr,(cz)=n+%'a-n-(n2 —I)Jrﬁ-a2 -n-(n2 —1)'(112 —22)+---+n.(;_”—;;_1)!- k: (n2 —k2)+---

m=1 m-2
0,(a) :1+%~a-n-(n—l)+§-a2 ~n~(n2 —l)-(n—2)+--~+ (n+1 m) a_. ( 2 —k2)+--~
n-2-m-2)
By comparing terms it is apparent that if “|a| < 1/ n®”, convergence is guarantied and only few terms in (m) are needed
in cases where (n) is large. If we now transform from (a) back to the frequency (f), convergence is secured if “f < fo/n”.
By performing the ratio-test on the numerator series, a larger interval of convergence is obtained as “Ja| < 4m”*/n*” and
corresponding “f < 2fym/n”. This allows us to determine how many terms (m) are needed when (n) is fixed.

A LADDER THERMOELECTRIC PARALLEPIPED GENERATOR, page 4 of 13, Gudlaugur Kristinn Ottarsson, (c) 2002.



5. Zeros and factors of the numerator polynomials:

It is now stated without proof that the zeros of the numerator polynomials which we label “P,(a)” lie on the negative “a”
axis where “a = RCs + LCs*”. The reader is reminded of the fact that “P,(0)=n". With elementary algebra we can
factor the first few numerator polynomials as:

P = 1

P, = (a+2)

P, = (a+2-1)-(a+2+1)

P, = (a+2—\/§)-(a+2)-(a+2+\/§)

P, :(a+2—#)-(a+2— 1+2£)-(a+2+ﬁ)-(a+2+ “f), 185 — Golden Section

P, :(a+2—\/§)~(a+2—1)~(a+2)-(a+2+1)~(a+2+\/§)

Observe that the zeros are centred about “a=-2" which is also a zero for all the even order polynomials. Also note a
new numerical sequence 0, 1, 212, 0, 32, ... where (¢) is the golden section. The limit of this sequence can only be 2 if
our initial statement is proved: The negative definiteness of the roots of the numerator polynomials P,(a).

Below is a graph of P;(a), P4(a) and Ps(a) that display the confinement of the roots to the interval (-4 <a <0).

Numerator polynomials
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An important frequency of concern is the smallest frequency where P(a) =0. If (®) is the angular frequency in [rad/sec],
we can write “a = RCs + LCs® = -o> LC + i ®RC = -o” LC (1 - i R/oL) = -(f/fy)* (1 - i /Qy)”, where “f, = 1/2n(LC)"*
is the free resonance frequency in [Hz] for a single crystal and “Q; = 2nf L/R” is the frequency dependant inductive
quality-factor. At very low frequencies, (a) is almost a pure imaginary number, whereas at the critical frequency (a) is
equally real and imaginary and finally, at a very high frequency, (a) is almost a pure negative real number!

We now present a formula to calculate the smallest root when we go from the origin to the left. This formula is based on

empirical experimental mathematics and will be shown to be exact! We label this first zero “az;“ where the Z1-
subscript refers to the numerator 1% zero.

a,, =—4-sin2(ij = f,=21, -sin(Lj
2-n 2-n

For large (n), an asymptotic formula is easily derived by expanding the sinus function around zero:

2 4

3
V4 V4 T 7 - f
021:__"‘ . P :fZl:fO'(;_ +Jz_0

n
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6. Zeros and factors of the denominator polynomials:

To factor the denominator polynomials, we apply the same algebraic methods as we did with the numerator
polynomials. Label the denominator polynomial for n elements Q,(a) in the hope of not to confuse the reader with the
frequent discussion of the “Quality factor” also labelled Q. Starting with the first few, we immediately see generally
more irrational roots and almost no integer roots, a different situation from the numerator polynomials. To our pleasure,
the distribution of the roots turn out to be very similar with a centre at “a = -2” and confinement, just as in the
numerator case.

Ql = 1
0, = (a + 1)
0, (a+ 3+«/§-2005(0)).(a n 3+\/§-2cos(7z))

- -COS 2 - -COS 942z COS -
0,= (a +—5+zﬁ3 (3)). (a el . (6% )). (a + Mﬁ e ) 0= arccos(zf)
+

0 :(a+2+2-cos(%”))-(a+2+2-cos(27”)) (a+2+2 cos(T” T”))-(a+2+2-cos(%”+47”))

To prepare the reader with the general expression up to any n, we have written Q;(a) using cos(0) and cos(n) as a fancy
way to express 1 and —1. Also notice that the 1% factor of Qs(a) is in fact Q,(a) in a trigonometric disguise! This is to
display the similarity and common attributes among the denominator polynomials. Below is a graph of Qs(a), Q4(a) and
Qs(a) that displays the confinement of the roots to the negative interval (-4 <a <0).

Denominator polynomials
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We now present a formula to calculate the smallest root when we go from the origin to the left. This will be the first
pole of the total impedance. This formula is based on empirical experimental mathematics but will be shown to be
exact! We label this first pole “ap,* where the P1-subscript refers to the numerator 1 root.

ap :—4-Sin2(4_:—_2] = fPl :2'f0 Sln(ﬁj

For large (n), an asymptotic formula is easily derived by expanding the sinus function around zero:

2
u 7T 7T fo
a :——+... :> = ey —

P 4n?—4on+1 I 2-n—-1 2-n

It is by now noticed, that the 1% zero and the 1% pole are related by a surprisingly simple relation:
— n+l
ap (n)—a21 (Z-n—l) = am(”) am( o )
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7. The Zeta function, Riemann Hypothesis and the Ladder Polynomials:

All recursive relations of both numerator and denominator coefficients have been derived without a single proof. We
will now present an equivalent set of equations easier to prove. By inspection and simple algebraic operations, the
following can be derived by some work. Notice a complete factorisation formula for both ladder polynomials!

O (a)=1 P(a)=1
0,(@)=0,.(@)+a-P,(a) F(@=0,(@)+(1+a)-F(a)
0,(@)=1+a-3 P () E(@=1+F, (a)+a- 3 F(a)

fierear(z8) so-filersen(s:)

To prepare for the proof of our so-far unproven statements, the following is a consequence of the factored polynomials
and is deduced from the fact, that “P,(0) =n” and “Q,(0) =1".

n—1
2-sinfi)-2sin(i)-2-in(i)--2-sin(" ) =2+ [ s 275 i
2. sm(4n 2) 2- Sln(4n 2) 2. 51n(4n 2) "2-sin(”4i”23) - 1 HS [ 2k l)j 1

-n—2

I t is the belief of this author, that proving these statements will be sufficient in proving most of the statements put forth
so-far. We herby name the problem: The Ladder Hypothesis. To get more acquainted with the roots or zeros of the
ladder polynomials, it is educational to connect each zero to its angle in the sinus argument. We further choose to use
the degree unit instead of the more mathematical radian, to stress the fact, that we have extended the so-called “regular
angles” to an infinite set which contain familiar historic angles like: 10°, 15°, 18°, 22%2°, 30°, 45°.

Denominator:

Numerator:
30 45
18 54 30 60
12% 38‘5‘ 64% 22% 45 67%
10 30 50 70 18 36 54 72
81% 24l§1 4(%3 571% 7}171 15 30 45 60 75
6% 20%J 34%3 481% 62#3 76%3 12% 25§ 38‘;‘ 5 1% 64% 77%

It is apparent that we need only one table of roots, the Numerator roots which also have a perfect central symmetry

about the 45° centre column. The Denominator roots are left biased starting at 30°, but will tend to 45° in the limit,
when n grows large.

8. The Ladder Polynomials and the Finite Products of Sinuses:
In the next sections we will explore ways to obtain the simplest proof.
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9. Finite products of the Sinus function:

By inserting “a=0" into the factored polynomials Q, and P,, two statements are derivable from “Q,(0) = 1" and “P,(0) =

n:

sz sinesin(e)-sinfes )< Jsin( £ 7)<

2-n

. . . o (ron- LS 2k -1 n
sl (e sns-nfee) = Flon{ T2 o

A simpler version is known in the literature*, the Fundamental Sinus Product. It has recently gained some attention :

n—1
sin(%)- sin({—f)~ sin(3,—1”)~ . -sin(”'(';"l))z Hsin(ﬂ—.kj =2"".p

_ 2
Sln(%) . Sln(Z_Z) Sln(%) .. Sln(/r(znﬂ—l)) 1- Sin(m(znﬂ—l))_ Sll’l(”(zn;z)) .. Sln(zﬁ_n) = (]j Sln(ﬂ.—k)] — 41—1’! ‘n

By the same method, we can generate a relation for the odd integers (2n-1) as seen in the next section (3).

10. The finite sums of Logarithms of Sinus functions:

Now let n>1 and take the natural logarithm of all four products of sinus to get four equally interesting statements:

T2 sin(ﬂ_k) - = ’ilnsm(ﬁ_.kj TRyt

k=1 n k=1 n

n—1 . n—1 .

1}32 . sin(ﬂz—nk] = \/; = Z;ln sin(ﬂz—nkj = —(n — 1)- 1n(2)+%-1n(n)
ﬁ2-sin( 7k ]— 2n-1 < nz_ilnsin( 7k j——(n—l).ln(2)+l.1n(2n—1)
x 2n-1) = 2n-1) 2

5 2- sin(M =1 nz_l:ln sin(wj = —(n - 1)- ln(2)

k=1 4n-2 ) - k=1 n-— -

We acknowledge the fact, that the last statement has not been proved yet.

11. Positive integers expressed as products of “zeros”: n=(1-1"")(1-12")...

Some peculiar products involving only the number “1” and powers of it, can generate the integers, the square root of
integers and much more. The Finite Products of sin simplifies by the exponential substitution “sin x = (2i) " (™ — ¢™)”
also known as the hyperbolic sinus of an imaginary argument. As the arguments are harmonic in our case, we can easily

derive:
_i2zk _in(n-1)
l-e " |=i""e¢ 2 .n

ink

_irk _iz{n-1)
(1_(_1)7k/n): n.i(n—l) (l_e n ]:iﬂ—l e 4 '\/; — l-(n—l)/Z .\/;

n—

n—

(l_l—k/n): "

1

-
i

-

i

=
—

=

-
i
-

N

—
=

(1 _l—k/(2n—1)): D) | [

=1

1 27k _iﬂ'»w(n—l)
(1—62”‘1 J — l-n—l e 24(2n—1) X /2n_1
_m-(2k—1) i/r-(n—l)2 m-n-(n—l)
l—e 2771 ="l 42 _—g 4n2

On the left we have a minimally expressed statement, on the right we have the essence of it’s proof.

=~
bl
i

=

n—

(1 (- 1),(2k,1)/(2n,1)): ) (2ne1)

=~

=1

=~
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12. The finite product of Cosinus functions:

We would now like to make contact with the finite product of the Cosinus Function. This can be accomplished by using
the identity sin 2x = 2 sinx cosX.

o) o5 ol 2 52 o)

This rather surprising result can also be deduced from the identity sin (x) = cos (1/2 — x) and the IT sin(nk/2n) product:
mT-(n—k
\/;—H2 sm( j H2 ( ( )j H2 cos( ) H2 cos( )
f{=n-1
We can now add both cos(x) and tan(x) to our arsenal of products of trigonometric functions:
n—1 - k
HZ sm[ j HZ cos( j \/_ , = l_Itan(—2 j:
k=1

From properties of the cos(x) function, we find that IT cos(nk/n) = {-1, 0, +1} depending on evenness and oddity of n.
The zero comes from even n = 2,4,6,... the minus one from n=3,7,11,... and plus one fromn=5,9,13,...

13. The Cotangent function and an infinite product expansion for Sinus:

The cot(x) function is rather special being the derivative of Insin(x). The Riemann Zeta function {(s) appears here:

= o 1 1 i 1 1 2 & )
COtx:_Z;z-mx:x'zz—z-zZ:"zx' - .—:__;.Z;(zk){;j

0 X —TT

w A2k 2k o 2k w 2k
lnsinx=lnx—2%=lnx—z(%k)(ﬁj =lnx— Z%(LJ

k=1 k=1 -l

We have used the infinite sum definition for the Riemann Zeta function to arrive at the final infinite double-sum. This
result can also be obtained directly from the infinite product formula for the sinus function:

. x2 x> x2 o 2
simx=x-|1-—|[-|1- 4 1= cee=x- 1—
( 7’ Ar? 97’ 1;[ ARy =

Notice the odd x in the sin function, which shows sin(x)/x as a simpler object than sin(x). Now take the natural
logarithm of the infinite product for the sin function and get:

0 2 © 2k
lnsinlenx+21n 1—(%) =lnx— Zl(i)

/=1 7T 0,k=1 -l

The interval of convergence is unconditional, at least on the interval [-nt < x < «t], which is in fact the largest interval to
occur. For clarity let us now summarise this result in a formal way:

S )] G

The last equality support the recent attempts** to redefine the Bernoulli numbers to be even indexed, as we have
related them to very fundamental functions, the natural logarithm and the sinus. The first seven (old) Bernoulli numbers
are:

B =1/6, B,=1/30, B,=1/42, B,=1/30, B,=5/66, B,=691/2730, B,=7/6
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14. Some power series with Riemann Zeta coefficients:

To get a broader view on power series with Bernoulli numbers and/or the Riemann Zeta functions, let us reproduce
some known results from the power series for tan(x) and cot(x):

G 0=

3 5 2k 2k 2k-1 © 2k
nx=x+ X4 2 X 2 '(2 _1)'B".x : (22"—1)‘5(216)'(£j
3 (2k)! k=1 T

3 2%k B .y S B
cotyot X X _ 2 -Bx 1 1_2.Z§(Zk)-(£)
k=1

x 3 45 (2k) Tx P

=N

At this moment, let us pause to express the first few even Riemann Zeta values and the alternating sign series also:

11 1 7 s 111 i
-y 4 _r Ne ey~ 22
4(2) 2 22+32+ 6 é,() 1> 22 32 12
1 1 1 P . I 1 1 7.7t
- T 4= R E—————
{( ) 14+24+34+ 90 ¢ ( ) 1t 2t 3 720
1 1 1 P . I 1 1 31-7°
= — —_— _ [ 6 =t — — e =
£e) 120 T3 T T ggs £°(6) 1° 2° 3° 30240
1 1 1 7 . 11 1 127-7°
8 =t —— = * 8 = 4 —ee=—
¢e) 2% 3 9450 ) 28 3 1209 600
1 1 1 7" + 1 1 1 511-7"
10)=—+—+—+:-= 10)=—-——=+——=—
é/( ) 12 38 93555 é’( ) 10 2 3 47900160
11 1 691-7" . 1 1 1 1414 477-7"
12)=— b= 12)= b e =
éa( ) 1> 2 3 638512875 C( ) 1 2 3k 1307674 368000
1 1 1 2.7 . 1 1 1 8191-7'"
4)=—+—+—+=———— Wd)=———+——-=
é’( ) | A b 18243225 é’( ) 1 oM 3 74724 249 600
Although (1) diverges to positive and negative infinity, {(0) is well behaved and is known to be {(0) =-1/2 and the
corresponding Bernoulli number is By = -1. We can now define a rational function “Koi = 2 {(2k) / 2 with “kg =-17
which will simplify our series as:
3 5 ©
tanx=x+x?+2 ol +---+(22"—1)-1<2k-x2"‘+---:i-2(22k—1) Ky x7t
k=0
1 x x 2:x° _ 1 = > _
COtx:;_g_E_% ..... K2k'x2kl+.”:;.(l_;’(2k"xzkj:_;’(ék"xz}{1
2 4 6 8 2k w 2k
lnsinx:]nx_x__x — X — X _..._K.Zk—x_...zlnx_zk.z"—x
6 180 2835 37800 2k = 2k

The reader can verify that we can differentiate the last equation to obtain the cot(x) equation. A closer look at the tan(x)
power series reveals the identity “tan(x) = cot(x) — 2 cot(2x)” a rather impressive fact! We further conclude, that the
cot(x) power series converges much faster than the tax(x) power series and is simpler in expression. By integrating the
tan(x) function we can obtain the In cos(x) function as a power series:

The expression “ayy x> inside the sum can be defined for k=0 rendering the value “ay = -In 2”. The final result is:

~ | 2 (2% ~1) k0,
lncosx——ln2+ln2—;T-x —ln%—;T-x
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15. Sinus and Gamma functions from series with Riemann Zeta coefficients:

We will now discover a relation linking the Gamma Function and the Sinus Function. In section 6 we explored the
Insin(x) power series with Riemann Zeta connection. By a change of variable “x =t z” and dividing by 2 it becomes:

OOL k—_L.m _i T _i _ 4. [sinz-z
; 2k ;Z (j B 2;1111 e et ¥ (Ll 1n,/_7”

This infinite series is of even order with index 2k=2,4,6,... and can be considered as the even part of a more general
series with index values k=2,3,4,5,... The odd series will accordingly have index 2k+1=3,5,7,... and it is:

i 2k+1 L2k Zz (jyﬁl i[tanhl———}—l H(€+ZJZ —
= 2k+1 2k+1

1 k=1 (=1

An interchange of summation order in the double sum revealed the Taylor series for tanh™(x). Now subtract the odd
series from the even series to get a series alternating in sign:

H kﬂHG?k(j ﬁﬂ%q{n-ﬂ:4ﬂ1@+j i

8
8

5t <)

To complete this, we use Euler’s Constant: ¥ = lim [1 +1 + +- + L—In m] and the Gamma Function: n!=I"(n+1).

m—>0

(e v ([ e y (O] B

(=1 =1 m. g

We have thus completed the task of evaluating both the even, and the odd power series we started with, and the result
is:

exp - §2k+1 2k :ﬁe—z/é_ l+z /226—7'2, l—‘l——z
S 2k +1 o l—z I(1+2z)

The reflective property of the Gamma Function “T'(z) I'(1-z) = n / sin zn” appears here, and the odd case generates an
infinite product formula to complement the even case.

16. The Factorial Operator and the Gamma Function:

Now we will give a rather strange expressions concerning two integers (m,n) with m>>n where (n) is fixed, but (m) will
be increasing and tending towards infinity.

| n n -1
lim| m" - ——— | = lim ] [— =1im1‘[(1+5] =1

m—so (m + n)! m—o-r -+ k mow i

._n monl | . T Kk
lim|m" - ——— :hm{m .l,gk }—hmH —lmHk (1+ J =nl=T(n+1)

m—>0 (m + n)' m—>0 +n m—o- M +k m—>o0

The relation “(m+n)! > m" m!” is an equality when n=1. To make precise the largeness of m, we do a calculus analyses
and get the formula “m > n’/2¢”, where ¢ is the relative error. For example, if we want <1% for n=5, we need m>1250,
a rather slow convergence! The product occurring “m” times can be used to define the general factorial function of a
real or complex variable z. The result is the following definition for the Gamma Function used in section 15:

m m -1
F(z+1):lim{mz~HkL} = I(z)=z"-lim mZ~H(1+%j
m—>o + z m—»>o

k=1 k=1
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17. The finite Product of sin(rwk/n) and I'(k/n):

We will now use two relationships among the Gamma Function I'(1+z) to prove the Finite Product of Sinus for the

fundamental argument (nk/n). The reflective property of the Gamma Function in section 8, will allow us to express the
Sinus Function in terms of Gamma Functions. This allows the use of a known formula for Finite Products of the

Gamma Function, which can be found in most standard mathematical handbooks:

n—1

H ()H_ j 2 )(nfl)/Z_n(1—2n-x)/2_r(n.x)

k=0

Now set “x=1"" and use the recursive property of the Gamma Function “I"(1+n) = n I'(n)” and remember that “T'(1)=1"
to obtain:

e 2 o

=
n-1 n-1 k 2 (n-1)
1—,[ j (n Dz -2 - HFz[_j _ ( )
k=1 k=1 n n
Armed with the Finite Product of Squared Gamma Functions of the argument (k/n), we can now turn to the final proof:
n—1 1 n—1 o n—1
Sln }’l H
1 B e Rt | e s Rt e b
F T 1—— F — =
n n n n n

This was not so hard! The key to this result is recognising that “IT f(k)f(n-k) = IT £*(k)” when “k=1,2...(n-1)". For
example, if n=5 we get 1-4:2:3:3-2+1-4=1-1-2-2-3-3-4-4=1>2-3%-4? which should convince the most sceptics!

18. Stirling’s formula and Insin(nk/n) sums:
By solving together the infinite product expansion of the sinus function and our newly obtained finite sums for Insin(x),
we can generate some powerful statements about infinite sums. Starting with the prototype argument (k/n) we can get:

Somsn %) £n(Z)- £ ()

k=1 n k=1
(n—l)' ) e w( k jﬂ y ( n j
=1 — - /=
n( nnfl k:]é% n-m 2}171
=
deas( kY L ()T (-1 Na(27)
k_lg;(mj f —ln[n—n ——74‘(7’1—5)'11'1(7)—5'11'1(”)4‘O'(l’l)

Here we have used the Stirling’s formula for n! = ['(n+1) to eliminate “n!/n"™! We have further taken the liberty to
define a function “ofn) = In(1+1/12n+1/288n’-...)” which obviously tends fast to zero, as n grows larger.
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19. The Factorial Triangle & Newton’s Polynomials:

The core of the Gamma Function is the factor (z+k) with k=1,2,3,...n and (z) can be integer, real or complex. By
performing the multiplication, a polynomial in (z) is formed. The coefficients of this polynomial can be arranged in a

Pascal’s-like triangle:

1
1 1
1 3 2
1 6 11 6
1 10 35 50 24
1 15 85 225 274 120
1 21 175 735 1624 1764 720
1 28 322 1960 6769 13132 13068 5040

...A WORK STILL IN PROGRESS...
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