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ABSTRACT: 
The power series for the trigonometric function cot(x) has Riemann-zeta-functions for coefficients - and it converges fast - 
thus promoting cot(x) to an important status in functional, numerical and computational analysis. In this paper we encounter 
two linear and useful expression with cotangent functions: “tan(x) = cot(x) – 2 cot(2x)” and “csc(x) = cot(x/2) – cot(x)” with 
binary scaled arguments. Four cotangent identities are gradually exposed or discovered throughout the paper:   
 

[ ]
[ ]

[ ]
[ ] )cot(lncosh)cot()tan(2sec

)cot(lnsinh)cot()tan(2tan

cotlncoshtancot2csc
cotlnsinhtancot2cot

4442
1

4442
1

2
1
2
1

πππ

πππ

−=−+−⋅=

−−=−−−⋅=

=+⋅=

=−⋅=

xxxx
xxxx

xxxx
xxxx

 

A1 
 
A2 
 
 
A3 
 
A4 

 
On the right, sinh ln (u) is used as a short hand for ½ ( u – u-1 ). The identities A1 & A2 show, that cot x and csc x are 
complementary to each other in the hyperbolic sense, – while A3 & A4 show, that tan x is complementary to sec x. 
 
The fact that the double angle identities in equations A1 – A4 are linear, enables us to derive a high-speed algorithm to 
calculate all the six trigonometric functions, including sin x and cos x - for navigational, engineering, animation, signal 
processing, and general scientific work. 
 
We also get a unique opportunity for a close encounter with the Riemann-zeta-function, which is inside the cot(x) function as 
a coefficient. This will leads us directly up front with the Euler-MacLaurin Summation Formula - which is then shown to 
have cot(i/2) as an “Eigenvalue” or “Proper value”. 
 
 
 
 

CONTENTS: 
 

1. Basic trigonometric functions with Riemann Zeta: ........... 2 
2. The Kappa Function normalizes Riemann Zeta: ................ 3 
3. The Odd Kappa – a further variation on Riemann-Zeta: ....... 3 
4. Riemann Zeta and Kappa variants for few even arguments: .... 4 
5. Secant and Cosecant power series with Kappa Variants: ...... 4 
6. Sinus and Gamma functions with Riemann Zeta coefficients: .. 5 
7. Euler-MacLaurin Summation formula with Kappa Coefficients:.. 5 
8. Inverted Euler - MacLaurin Summation with Kappa:............ 6 
9. The Imaginary part of Euler – MacLaurin Summation:.......... 7 

 
 

Website: http://www.islandia.is/gko/papers/ 
Email: gko@islandia.is 

 
Riemann Zeta, Bernoulli, Euler & MacLaurin.              Guðlaugur Kristinn Óttarsson.                (c) Pro%Nil Systems, 21. May, 2005. 

mailto:gko@islandia.is
http://www.islandia.is/gko/SEE.HTML
mailto:gko@islandia.is


1. Basic trigonometric functions with Riemann Zeta coefficients (or Bernoulli Numbers). 
The trigonometric function cot(x) is rather special - being the derivative of ln sin(x) - and the same applies to the tan(x) 
function, which is the negative derivative of ln cos(x). By expanding the cot(x) function and the tan(x) function into power 
series with the argument x, Bernoulli Numbers Bk or the Riemann Zeta function ζ(s) appear in coefficients in either function: 
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The Riemann-Zeta function ζ(2k) is more economical and is therefore chosen for the summation. Although ζ(1) diverges to 
positive and negative infinity, ζ(0) is well behaved and is known to be ζ(0) = -1/2 and the corresponding Bernoulli number is 
B0 = -1. We can define an eluded rational function “κ2k = -2 ζ(2k) / π2k” with “κ0 = 1” compacting the series above to: 
 

( )∑

∑∑

∞

=

−

∞

=

−
∞

=

⋅⋅−−=

⋅=







⋅+⋅=

0

12
2

2

0

12
2

1

2
2

12tan

11cot

k

k
k

k

k

k
k

k

k
k

xx

xx
x

x

κ

κκ

 

 
A closer look at the power series for tan(x) reveals the identity “tan(x) = cot(x) – 2 cot(2x)” which is used to prove Eq A1. 
The power series for cot(x) converges much faster than the power series for tax(x) and is simpler in expression. Alternative 
expressions can be obtained by the methods of residues, which gives very clean and simple expansions: 
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We are now in a unique position – as we can relate simplicity with complexity and gain information in the process. The first 
step is to integrate the right-hand equalities above - as we get both convergent power series for ln sin(x) and ln cos(x): 
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The Odd Kappa is defined by the rightmost equation: “κ2k

odd   = (1- 2-2k) κ2k“ and can clearly be extended to odd arguments 
2k+1 as well. The Odd Kappa engulfs the binary factor effectively and minimally. The leftmost equations lead immediately 
to the infinite product formulae for both the sin(x) and cos(x) functions: 
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Using Taylor series, Residue theory, Integration and Differentiation – we have obtained both clean and powerful statements 
concerning the basic Trigonometric functions sin(x), cos(x), cot(x) and tan(x).  
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2. The Kappa Function κm normalizes Riemann Zeta and Bernoulli numbers. 
In Section 1 we introduced Kappa κ as the most natural expression to convey either the presence of the Riemann-zeta 
functions or the Bernoulli-numbers in power series for both cot(x) and tan(x):   
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We restrain us from using the Odd Kappa “κ2k

odd   = (1- 2-2k) κ2k“ in this section. The integral of the above series gives us 
some very clean and simple expressions of the logarithm of both sin(x) and cos(x) functions: 
 

( ) ( )∑

∑

∞

=

∞

=

⋅
⋅−

=+⋅
⋅−

+−
⋅

−−−−=

⋅
+=−

⋅
+−−−−−=

1

22
2

22
28642

1

2
2

2
2

8642

2
12

2
12

2520
17

45122
cosln

2
ln

28003783521806
lnsinln

k

kk
k

kk
k

k

k
k

k
k

x
k

x
k

xxxxx

k
x

x
k
xxxxxxx

κκ

κκ

 

 
The coefficient to x2k inside the summation for ln cos(x) can be defined when k=0 rendering the value “ln 2” resulting in: 
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The interval of convergence is unconditional, at least on the interval {-π < x < π}, which is in fact the largest interval to 
occur. For clarity let us now summarise the Riemann-zeta, Bernoulli and the present Kappa into a single fourfold equation: 
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The second equality supports the recent attempts** to redefine the “old” Bernoulli numbers as to be even indexed. The first 
few Bernoulli numbers together with the Kappa numbers - for even arguments - are: 
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It is interesting that all the denominators in Bn above are divisible by 6 – except B0 of course – but also B7 = 7/6. 
 

3. The Odd Kappa – a further variation on the Riemann-Zeta function: 
The Odd Kappa was introduced in Section 1 as a short hand for the ln cos(x) power series. We can define other variations on 
Kappa such as the Odd Alternating Kappa. 
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The Odd Kappa for even arguments has the first few values as:  “κodd

(2)   = - 1/4”,  “κodd
(4)   = - 1/48”,  and “κodd

(6)   = - 1/480”. 
The Odd Alternating Kappa is in fact an extension to the classical Euler Number En/2 – but for half-integer values. The first 
two odd arguments, m=1 and m=3 gives the values “κodd±

(1)   = - ½“ and “κodd±
(3)  = - 1/16“ respectively.  
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4. Riemann Zeta and the Alternating Variant for few even arguments: 
At this moment, let us pause to express the first few even Riemann Zeta values. This should be compared to the Bernoulli 
Numbers Bk and the present Kappa κ2k up to k = 6 in Section 2. The Alternating series ζ± (m) is also given - on the right: 
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5. Secant and Cosecant power series with Kappa Variants as coefficients: 
The power series for the cosecant function csc(x) can be obtained with the identity: “csc(x) = cot(x/2) – cot(x)”. The 
Alternating Kappa κ± appears in the series expansion here. The null argument evaluates to κ±

0 = -1 which is the negative of 
the bare Kappa κ0 = 1 with null argument: 
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The Alternating Kappa is related to the Odd and Even Kappa in a simple manner: “κ±

  = κodd
  - κeven  = κ  - 2 κeve“ and we can 

easily calculate the first few Alternating Kappa values with the formula: “κ±
m = -2 ζ± (m) / πm ” - as follows: 

 
08095023/511,800604/127,12015/31,360/7,6/1,1 1086420 −=−=−=−=−=−= ±±±±±± κκκκκκ  

 
The csc(x) can be transformed into a sum of residues – and with “z = x/2π” we get the following: 
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On the right we recognize the two residue series from Section 1, which give “x -1  - ½ cot ½ x + ½ tan ½ x” and is identical to 
“x -1  - csc(x)”. Further - we can reinstate the zero-index into the right sum - to get the complete residue series for csc(x). 
 
 
Next we pursue the Odd Alternating Kappa, which is in fact an extension to the classical Euler Number En/2  – but for half-
integer values. This coefficient has the first two values κodd±

(1)   = - ½ and κodd±
(3)  = - 1/16 and “κodd± = κodd - 2κodd.even ” 

 

( )
( )

( ) ( )

( ) ( )
( )

( ) [ ] 2244444
1

22222
1

1 2
1

2
1

2
1

2
12

1

1
22

2
1

2
1

1

12

2
1

2
1

1 0

12

2
1

0 1

12
12

2
1

0

12
12

sec)cot()cot(

2
1

2
1

2
1

2
11

11112

xxxxx

m

m

k

k

k

k
k

k

kodd
k

wm
w

vm
vwv

zmzmzmzm
z

z
z

zzzz
x

x

⋅−=−−+⋅=





−
+

−
⋅+⋅=









++

−
−+

−
+−

+
−−

⋅⋅=
−−

−⋅−
⋅=




















−

−⋅







−

⋅−=







−

−=⋅
−
−

⋅





=⋅

∑

∑∑

∑∑ ∑∑∑∑

∞

=

∞

=

∞

=

∞

=

−
∞

=

∞

=

+
∞

=

∞

=

+
+

∞

=

+±
+

ππ

κ

 

 
This completes the pairing of four Kappa Coefficients against four Trigonometric Functions: cot, csc, tan, sec - hence QED! 
 

( A1:  cot  ~  κ )  (A2:  csc  ~  κ± )  (A3:  tan  ~  κodd  ) (A4:  sec  ~  κodd± ) 
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6. Sinus and Gamma functions from series with Riemann Zeta coefficients: 
We will now discover a relation linking the Gamma Function and the Sinus Function. In section 6 we explored the ln sin(x)  
power series with Riemann Zeta connection. By a change of variable “x = π z” and dividing by 2 it becomes:  
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This infinite series is of even order with index 2k=2,4,6,… and can be considered as the even part of a more general series 
with index values k=2,3,4,5,…  The odd series will accordingly have index 2k+1=3,5,7,… and it is: 
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An interchange of summation order in the double sum revealed the Taylor series for arctanh(x).  Now subtract the odd series 
from the even series to get a series alternating in sign: 
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To complete this, we use Euler’s Constant: [ ]mmm

ln1lim 1
3
1

2
1 −++++=

∞→
γ  and the Gamma Function: n! = Γ(n+1). 
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We have thus completed the task of evaluating both the even, and the odd power series we started with, and the result is:  
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The reflective property of the Gamma Function “Γ(z) Γ(1-z) = π / sin zπ” appears here, and the odd case generates an infinite 
product formula to complement the even case. We can now write: “ csc x = π -1 Γ(x/π) Γ(1-x/π)  “ and compare with Eq. A2.     
 
 

7. The Euler - MacLaurin Summation formula with Kappa Coefficients. 
In sections 1 and 2 we have elaborated on the trigonometric functions cot(x) and tan(x) and found very economical power 
series expansions for them – as well as an infinite product expansion for both sin(x) and cos(x), In the present section we will 
discover that the cot(x) power series is in fact a prototype for the most general sum Σ f(k) and in the process relate the Euler-
MacLaurin summation formula to our newly obtained cot(x) power series. In fact the Euler- MacLaurin summation formula is 
shown to be a weighted cotangent power series for the argument (i/2). 
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Here f(2m) symbolises the even derivative of the function f(s) and the zero derivative is the function itself  f(0) = f. To take an 
explicit example let f(s) = es which gives the simple result that f(m) = f - which effectively eliminates all even derivatives from 
the summation. This will give: 
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The last equality is identical to that calculated directly from the Geometric Series Σ xk  = (xn+1 – 1)/(x - 1). 
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8. Inverted Euler - MacLaurin Summation formula normalized with Kappa: 
By differentiating the Euler-MacLaurin summation formula and use the Even Kappa as a coefficient we get very efficient and 
clean expression for the reversed problem – that is - how to calculate an infinite series with even terms:  
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We shall now test this formula with the exponential function f(n) = en as before with the Geometric Series. 
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Dividing out en we have the familiar cot(x) series from section 1 and 2: 
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Now curiosity arises about the odd sum – and using results from section 5, we have the following odd series as a reference:  
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Here (γ) is Euler’s Constant “γ = 0.577215664901532…“ and by performing a term by term differentiation, the following is 
obtained: 
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We now apply results from the standard literature which expresses Γ’/Γ as an infinite series of harmonic differences – and 
with the extra benefit to cancel Euler’s Constant above to obtain: 
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If we compare this with Section 1 - which gave cot(x) and tan(x) as an infinite harmonic series – we have accomplishment the 
analogous reduction for the odd case. Summing odd and even terms, starting from k=2, gives the following three identities:  
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Based on the prototype functions above with Kappa coefficients – the extended inverted Euler-MacLaurin summation is:  
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The real part corresponds to the Inverted Euler-MacLaurin summation. Beware that m=1 is excluded from the sum. But on 
the other hand – if we define “κ 1 = - i ” then it is possible to move δf/δn into the left sum – a tempting thought! 
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9. Investigating the Imaginary part of Euler - MacLaurin: 
Now insert simple test functions like k, k2, k3 and k3 into the general sum – and with some work we get: 
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The imaginary part is a slow starter and we must go much higher to gain sight – but we could hope for a recursive relation 
among the Odd Kappa – or equivalently Riemann-Zeta for an odd argument. Before we go further into the imaginary part we 
need more equipment – the subject of the next section. 
 
 

10. Binary Structures and Logic Relationships in the Kappa Coefficients: 
Now let us summarise the relationship among the Kappa Coefficients encountered – now including the Euler numbers: 
 

κodd   = κ  - κeven = (1- 2-m) κm 
 

κ±
  = κodd

  - κeven  = κ  - 2 κeven = (1- 21-m) κm 
 

κodd± =κodd.odd - κodd.even = κodd - 2κodd.even  
 
These functions generate the four basic “polar” trigonometric functions cot, csc, tan & sec respectively, as a power series: 
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We see that a family of functions are emerging containing the Trigonometric functions and the Gamma function.  
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